7.1 The free electron model 141
7.2 Pauli paramagnetism 144
7.3 Spontaneously spin-split

bands 146
7.4 Spin-density functional

theory 148
7.5 Landau levels 149
7.6 Landau diamagnetism 151
7.7 Magnetism of the

electron gas 154
7.8 Excitations in the

electron gas 158
7.9 Spin-density waves 160
7.10 The Kondo effect 162
7.11 The Hubbard model 162
7.12 Neutron stars 163

Magnetism in metals

In this chapter the magnetic properties of metals are considered. In previous
chapters we have concentrated on interacting but localized magnetic moments.
The conduction electrons in metals are delocalized and can wander freely
through the sample; they are known as itinerant electrons. In some cases the
magnetic moments in metals are associated with the conduction electrons,
in other cases the magnetic moments remain localized. In both cases para-
magnetic and diamagnetic behaviour can occur. Ferromagnetism is possible
under certain conditions. Most of the discussion in this chapter will be centred
around the free electron model, which is introduced in the following section.
The free electron model is a crude approximation to most real situations,
but it is simple to consider and will allow the discussion to proceed a long
way. Subsequent sections contain derivations of the magnetic properties of the
electron gas which include Pauli paramagnetism, Landau diamagnetism, the
origin of RKKY interactions, instabilities of the electron gas such as spin-
density wave formation, and the Kondo effect which occurs when localized
moments interact with the electron gas.

7.1 The free electron model

We begin our discussion of the magnetism of itinerant electrons by reviewing
the free electron model. In this model, the periodic potential due to the lattice
is ignored, and the electrons fill states up to the Fermi wave vecfor kg. Points
in k-space are separated by 27/L (see Fig. 7.1(a)) where V = L3 is the
volume of the sample, so that the number of states between k and k + dk is
equal to 4k dk, the volume of a spherical shell of radius k and width dk (see
Fig. 7.1(b)) divided by (27r/L)3, the volume occupied by one point in k-space.
Each state is doubly occupied, by an electron with spin-up and an electron with
spin-down, so there is an additional factor of two. Hence the density of states
g(k) dk can be written as

2
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where the factor of 2 takes care of the two spin-states of the electrons. Hence
Vik? dk
g(k)dk = 5 (71.2)

If the material has N electrons, then at absolute zero (T = 0) these electrons
will fill up the states up to a maximum wave vector of kr. Hence
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so that
ki = 3m2n (7.4)

where n = N/ V is the number of electrons per unit volume. The Fermi energy
EF is defined by -
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The density of states as a function of energy E o k2 is proportional to E!/2,
ie.
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The density of states at the Fermi energy is therefore given by!
dn 3n
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We note in passing that another useful expression for g(Eg) can be obtained
by combining eqn 7.4, eqn 7.5 and egn 7.9 to yield

mekF

8(Ep) = R (7.10)

which shows that g(Ep) o me. Many important properties depend on the
density of states at the Fermi energy and therefore it is useful to know that it is
proportional to the electron’s mass. In many systems of interest, the electron’s
mass is enhanced above its free space value due to the effect of the band
structure or interactions.

In the free electron model we ignore the periodic potential due to the lattice.
However if it is included as a perturbation (the nearly free electron model)
it turns out that it has very little effect excepr when the wave vector of the
electron is close to a reciprocal lattice vector. At such points in k-space energy
gaps appear in the dispersion relation (see Fig. 7.2).

So far, everything has been treated at T = 0. When T > 0, the density of
states g(E) is unchanged but the occupancy of each state is governed by the
Fermi function f(E) which is given by

1

1B = 1 (7.11)

where y is the chemical potential which is temperature dependent. This func-
tion is plotted in Fig. 7.3. At T = 0, f(E) is a step function, taking the value
1 for E < pand O for E > w. The step is smoothed out as the temperature
T increases. When the Fermi function is close to a step function, as is the
usual case for most metals at pretty much all temperatures below their melting
temperature, the electrons are said to be in the degenerate limit. The Fermi
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Fig. 7.1 (a) Electron states are separated by
27 /L. Each state can be doubly occupied and
occupies a volume (27/ L)3. (b) The density
of states can be calculated by considering the
volume in k-space between states with wave
vector k and states with wave vector & + dk,
namely 4k dk.

1Equation 7.9 could also be derived using
eqns 7.2, 7.4 and 7.5 directly,
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Fig. 7.2 The energy gap at the Brillouin zone
boundary.,
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Fig. 7.3 (a) The Fermi function f(E) defined
by eqn 7.11. The thick line is for 7 = 0. The
step function is smoothed out as the temper-
ature increases. The temperatures shown are
T=07T=00lu/kg, T = 0.05u/kg and
T =0.1u/kg. (b) The density of states g(E)
for a free electron gas is proportional to E /2,
(c) f(E)g(E) for the same temperatures as in
(a).
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function is a consequence of the Pauli exclusion principle, that each electron
must have a unique set of quantum numbers and no two electrons can sit in the
same state. For (E — u) > kgT the Fermi function approaches the Maxwell-
Boltzmann form e~ E~#)/*8T which is known as the non-degenerate limit.

The Fermi energy is the energy of the highest occupied level at T = 0 and
is determined by the equation

EF
f(E)g(E)dE =n. (7.12)

The function f(E)g(E) is shown in Fig. 7.3(c). At T = 0 we easily find that
the Fermi energy precisely equals the chemical potential: Eg = . For T > 0,
a tedious calculation gives
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but this means that equating Ef and w is good to 0.01% for typical metals

even at room temperature, although it is worthwhile keeping in the back of
one’s mind that the two quantities are not the same. The Fermi surface is the



set of points in k-space whose energy is equal to the chemical potential. If the
chemical potential lies in a gap, then the material is a semiconductor or an
insulator and there will be no Fermi surface. Thus a metal is a material with a
Fermi surface.

7.2 Pauli paramagnetism

Each k-state in a metal can be doubly occupied because of the two possible
spin states of the electron. Each electron in a metal is therefore either spin-
up or spin-down. When a magnetic field is applied. the energy of the clectron
is raised or lowered depending on its spin. This gives rise to a paramagnetic
susceptibitity of the electron gas and is known as Pauli paramognetism.

7.2.1 Elementary derivation

Initially, we negiect the orbital contribution and take g = 2. We also neglect
smearing of the Fermi surface due to finite tlemperature. As shown in Fig. 7.4,
in an applied magnetic field, the electron band is spin-split into twe spin
subbands separated by giig B = 2up B. We will assume that gy B is a very
small energy so that the splitting of the energy bands is very small. The number
of extra electrons per unit volume with spin-up is #3 = %,g(E.:],uu B. This is
also the number per unit volume of the deficit of electrons with spin-down,
ny = % g(Ep)pep B. Thus the magnetization is given by

M = up(n~ —n)) = g(Er)ip B (7.14)

and the magnetic susceptibility xp (the subscript ‘P* denoting the Pauli
susceptibility) by

M peM 2
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where the final equality is obtained using eqn 7.9. Because yp <« | we are
justified m writing xp =2 poM/ B (see Section 1.1.4).

Our expression for Pauli paramagnetism is temperature independent, al-
though admittedly this is because we started out by ignoring the smearing
of the Fermi surface due to finite temperature. However, if temperature is
included, it makes only a rather small correction {see Exercise 7.1). Pauli
paramagnetism is a weak effect, much smaller than the paramagnetism
observed in insutators at most temperatures due to Curie’s law. This is because
in paramagnetic insulators at least one electron on every magnetic atom in the
material contributes. but in a metal, it is only those electrons close to the Fermi
surface which play a réle. The small size of the paramagnetic susceptibility
of most metals was something of a puzzle until Pauli pointed out that it
was a consequence of the fact that electrons obeyed Fermi Dirac, rather than
classical, statistics.
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Fig. 7.4 Density of states showing splitting
of cnergy bands in a field B. The splitting is
shown grestly exaggerated,



